回复: 菜鸟成长手册—光电鼠标基础知识入门
(图6,光电鼠标的透镜) 4.光学传感器
光学传感器是光电鼠标的核心部件,“CMOS感光器”和“数字信号处理器(DSP)”是其中最重要的两部分。CMOS感光器是一个由数百个光电器件组成的矩阵,恰似一部相机,用来拍摄鼠标物理位移的画面。光学传感器会将拍摄的光信号进行放大并投射到CMOS矩阵上形成帧,然后再将成帧的图像由光信号转换为电信号,传输至数字信号处理器进行处理。DSP对相邻帧之间差别进行除噪和分析后,将得出的位移信息通过接口电路传给计算机。
(图7,这是一款微软制造的光学传感器)
5.接口控制器芯片 接口控制器芯片负责管理光电鼠标的接口电路部分,使鼠标可以通过USB、PS/2等接口与PC相连。基于成本方面考虑,各品牌的光电鼠标一般都采用第三方的接口控制器芯片,而像赛普拉斯、凌阳、EMC都是常见的接口控制器芯片厂商。另外,有的光电鼠标选用了具备接口控制器功能的光学传感器(比如原相公司的PAN401光学传感器),所以在这类光电鼠标内部是无法发现独立的接口控制器芯片的。
(图8,这就是一款赛普拉斯的接口控制器芯片) 6.微动开关
平时使用一款光电鼠标时,打交道最多的要算是鼠标按键了,而鼠标按键一一对应着内部的微动开关,所以按键板设计和微动开关的品质共同决定了鼠标的手感。当然,微动开关的质量还影响着光电鼠标的故障率。因此,有的厂商会在宣传材料中声明自己的某款型号产品使用了高档的微动开关,从而吸引消费者购买。
(图9,光电鼠标采用的微动开关)
三、光电鼠标的定位原理 看了上面的介绍,相信读者朋友对光电鼠标的定位原理已经有所了解了。下面,我们总结一下:发光二极管照亮采样表面,对比度强烈的待采样影像通过透镜在CMOS上成像,CMOS将光学影像转化为矩阵电信号传输给DSP,DSP则将此影像信号与
存储的上一采样周期的影像进行比较分析,然后发送一个位移距离信号到接口电路。接口电路对由DSP发来的位移信号进行整合处理,而已传入计算机内部的位移信号再经过
驱动程序的进一步处理,最终在系统中形成光标的位移。
(图10,光电鼠标定位示意图) 小知识:光电鼠标和激光鼠标区别
光电鼠标并不等于激光鼠标,两者的显示原理有所区别。比如,光电鼠标需要透镜支持,而部分激光鼠标则不需要。这类激光鼠标的成像原理是将激光照射在物体表面,产生的干涉条纹可直接产生光斑点反射到传感器上,因此省略了传统的光学透镜系统,理论上这样反馈的图像更精确。
另外,人造红宝石激光发生器和特制的半导体二极管都可产生激光。前者可生成可见激光,但成本高昂,很少会使用在鼠标领域中;后者可生成不可见激光,成本相对低廉,市面上出售的激光鼠标大多采用这种方式。所以说,工作时底部是否发光,也可作为光电鼠标和激光鼠标的一个明显区别。
四、光电鼠标的重要参数 1.光电鼠标的分辨率
光电鼠标的分辨率通常用CPI来表示,CPI越高,越利于反映玩家的微小操作。而且在鼠标光标移动相同逻辑距离时,分辨率高的需要移动的物理距离则要短。拿一款800 CPI的光电鼠标来说,当使用者将鼠标移动1英寸时,其光学传感器就会接收到反馈回来的800个不同的坐标点,鼠标箭头同时会在屏幕上移动800个像素点。反过来,鼠标箭头在屏幕上移动一个像素点,就需要鼠标物理移动1/800英寸的距离。所以,CPI高的鼠标更适合在高分辨率的屏幕下使用。光学机械鼠标的分辨率多为200~400 CPI,而光电鼠标的分辨率通常在400~800 CPI之间。
除CPI以外,DPI也常被人用来形容光电鼠标的分辨率。CPI的全称是“count per inch”,直译为“每英寸的测量次数”;而DPI的英文全称是“dots per inch”,直译为“每英寸像素”。由于光电鼠标的分辨率反映了一个动态过程,所以用CPI来形容更恰当些。但无论是CPI还是DPI,描述的都是光电鼠标的分辨率,不存在性能差别。
2.光电鼠标的刷新频率
光电鼠标的刷新频率也被称为扫描频率或者帧速率,它反映了光学传感器内部的DSP对CMOS每秒钟可拍摄图像的处理能力。文章第三部分在介绍光电鼠标定位原理时已提到过了,光学传感器中的数字处理器通过对比所“拍摄”相邻照片间的差异,从而确定鼠标的具体位移。但当光电鼠标在高速运动时,可能会出现相邻两次拍摄的图像中没有明显参照物的情况。那么,光电鼠标势必无法完成正确定位,也就会出现我们常说的“跳帧”现象了。而提高光电鼠标的刷新频率就加大了光学传感器的拍摄速度,也就减少了没有相同参考物的几率,达到了减少跳帧的目的。